Fine Mapping of a Novel defective glume 1 (dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice
نویسندگان
چکیده
In cereal crops, vegetative and spikelet development play important roles in grain yield and quality, but the genetic mechanisms that control vegetative and spikelet development remain poorly understood in rice. Here, we identified a new rice mutant, defective glume 1 (dg1) mutant from cultivar Zhonghua11 after ethyl methanesulfonate treatment. The dg1 mutant displayed the dwarfism with small, rolled leaves, which resulted from smaller cells and more bulliform cells. The dg1 mutant also had an enlarged leaf angle and defects in brassinosteroid signaling. In the dg1 mutant, both the rudimentary glume and sterile lemma (glumes) were transformed into lemma-like organ and acquired the lemma identity. Additionally, the dg1 mutant produced slender grains. Further analysis revealed that DG1 affects grain size by regulating cell proliferation and expansion. We fine mapped the dg1 locus to a 31-kb region that includes eight open reading frames. We examined the DNA sequence and expression of these loci, but we were not able to identify the DG1 gene. Therefore, more work will be needed for cloning and functional analysis of DG1, which would contribute to our understanding of the molecular mechanisms behind whole-plant development in rice.
منابع مشابه
A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice
Recent studies have shown that molecular control of inner floral organ identity appears to be largely conserved between monocots and dicots, but little is known regarding the molecular mechanism underlying development of the monocot outer floral organ, a unique floral structure in grasses. In this study, we report the cloning of the rice EXTRA GLUME1 (EG1) gene, a putative lipase gene that spec...
متن کاملMULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice.
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of the spikelet remains unclear. In this study, we identified a rice (Oryza sativa) spikelet mutant, multi-floret spikelet1 (mfs1), that showed delayed transformation of spikelet meristems to floral meristems, which resulted in an extra hull-like organ and an elongated rachilla. In a...
متن کاملPANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice
In rice panicle development, new meristems are generated sequentially in an organized manner and acquire their identity in a time- and position-dependent manner. In the panicle of the panicle phytomer2-1 (pap2-1) mutant, the pattern of meristem initiation is disorganized and newly formed meristems show reduced competency to become spikelet meristems, resulting in the transformation of early ari...
متن کاملRegulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice
Grasses produce seeds on spikelets, a unique type of inflorescence. Despite the importance of grass crops for food, the genetic mechanisms that control spikelet development remain poorly understood. In this study, we used m34-z, a new mutant allele of the rice (Oryza sativa) E-class gene OsMADS34, to examine OsMADS34 function in determining the identities of glumes (rudimentary glume and steril...
متن کاملFRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.
Inflorescences of grass species have a distinct morphology in which florets are grouped in compact branches called spikelets. Although many studies have shown that the molecular and genetic mechanisms that control floret organ formation are conserved between monocots and dicots, little is known about the genetic pathway leading to spikelet formation. In the frizzy panicle (fzp) mutant of rice, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017